UCD Biomedical Engineering

Dr Stephen Redmond

Biomedical Engineering (NBS1) Programme Director UCD School of Electrical and Electronic Engineering

Grace Garragher

Stage 2, ME Biomedical Engineering.

Dr Ben O'Callaghan

ME Biomedical Engineering Graduate, UCD, 2017. PhD Biomedical Engineering, UCD, 2021. Lead Data Scientist, Danu Sports.

Biomedical Engineering

- Biomedical Engineering 'The application of engineering principles to understand,
 - modify or control biological systems'
- Wide variety of application areas

 Biosignal, bioimaging, and data analysis
 Biosensors, brain computer interfaces
 Rehabilitation engineering, orthopaedics
 Biomechanics & sports performance
 Biomaterials, cell, and tissue engineering
 Medical device design

• Foundation in Electrical/Electronic or Mechanical Engineering

Cochlear implants

Pacemakers

Deep brain stimulation

Gait analysis

Biomedical Engineering

The application of engineering principles to understand, modify or control biological systems

Rehabilitation robotics

Biomedical signal processing

MR imaging

Physiological modelling

Angioplasty

Tissue engineering

ish Medtech Association

Ireland continues to be a leading global hub for medtech

Strategy 2022 - 2025

Defining Ireland's medical technology sector

Medical technology companies are defined as companies that:

- Design and/or manufacture medtech products and/or solutions, including software and hardware for healthtech.
- Manage significant international shared services from Ireland.
- Directly service the medtech sector.

The sector is diverse, and the following seven broad categories have been established to describe and the sector in Ireland:

Irish Medtech Association

1. Diagnostic

used to identify a

or injury.

disease, condition,

Devices or software

2. Ophthalmic

Diagnosis and treatment of conditions relating to the eye.

3. Vascular/ Endovascular

Relating to the treatment of vascular disease.

4. Orthopaedic

Strategy 2022 - 2025

Relating to the treatment of musculoskeletal system including muscles, bones, joints, ligaments, and tendons.

5. Hospital/ Homecare

Other segments of the market not captured here such as respiratory, surgical devices, minimally invasive devices and so forth.

6. Neurology

Concerning disorders and diseases of the nervous system including the brain and spinal cord, peripheral nerves and muscles.

7. Service

Outsourced function to a third party such as product development, design, manufacturer and generation of intellectual property.

Defining Ireland's digital healthtech sector

The digital healthtech sector in Ireland is diverse and the following nine broad headings have been established to describe and categorise the sector in Ireland. These categories broadly reflect solution types to offer a consistent view of digital health activity in Ireland.

Irish Medtech Association

1. Connected 2. Digital 3. Mobile health medical devices therapeutics (mHealth) and wellness Wearable and wireless medical Software driven therapeutics. Wellness, fitness trackers, devices; software driven diagnostic nutrition and lifestyle apps; virtual health assistants: products; therapy delivery devices; biometric sensors. healthcare coaching. 4. Personalised 5. Remote patient 6. Health Information monitoring & telehealth **Technology (HIT)** healthcare Precision medicine; personalised Electronic medical record Remote patient monitoring support, symptom management solutions; medication adherence systems; electronic prescribing and interventions; Clinical tools: telemedicine virtual visits and order entry systems; decision support solutions. and remote care programmes. consumer health IT applications 7. Connected care 8. Data, analytics 9. Technology solutions and infrastructure management and cyber security Care management platforms, Patient data hosting; encryption ICT services and staffing, and financial and cyber security; AI and management solutions. predictive analytics; digital biomarkers.

https://www.ibec.ie/connect-and-learn/industries/life-sciences-and-healthcare/medtech-strategy-2025

Strategy 2022 - 2025

"450 companies employing 42,000 people to deliver €12.6 billion in medtech exports"

https://www.idaireland.com/explore-your-sector/business-sectors/medtech

CBINSIGHTS

Biomedical Engineering pathways at UCD

- Decision at the end of Stage 3:
 - 1. Graduate with **BSc** (Engineering Science)
 - 2. Progress to Stage 4 of **BE in Biomedical Engineering**
 - Or, if eligible (weighted GPA \geq 2.8):
 - 3. Progress to Stage 1 of **ME Biomedical Engineering** programme

BSc: Bachelor of Science BE: Bachelor of Engineering ME: Master of Engineering

UCD Biomedical Engineering programmes

Stage 2 Biomedical Engineering modules

Trimester	Module Code	Module Title	Credits	Level
Autumn	MATH 20290	Multivariable Calculus for Engineers	5 Credits	level: 2
Autumn	EEEN 20020	Electrical & Electronic Circuits	5 Credits	level: 2
Autumn	MEEN 20010	Mechanics of Fluids I	5 Credits	level: 2
Autumn	PHYS 20040	An Introduction to Physiology	5 Credits	level: 2
Autumn	EEEN 20010	Computer Engineering I	5 Credits	level: 2
Autumn		Elective	5 Credits	
Trimester	Module Code	Module Title	Credits	Level
Spring	EEEN 20030	Engineering Electromagnetics	5 Credits	level: 2
Spring	STAT 20060	Statistics and Probability for Engineers	5 Credits	level: 2
Spring	MEEN 20040	Mechanics of Solids I	5 Credits	level: 2
Spring	MEEN 20030	Applied Dynamics I	5 Credits	level: 2
Spring	MEEN 20070	Materials Sci & Eng I	5 Credits	level: 2
Spring		Option	5 Credits	

Options

	Option Modules*					
5 Credits	level: 2					
5 Credits	level: 2					
In-Programme Electives						
5 Credits	level: 2					
5 Credits	level: 2					
5 Credits	level: 2					
5 5 5 5 5	Credits Credits Credits Credits Credits					

* Rule for Options: Select 1 of 2 in Trimester 2 (Spring)

Students intending to pursue the <u>Mechanical Engineering stream</u> of Biomedical Engineering MUST select "MEEN20060 Mechanical Engineering Design I" as their Stage 2 Option.

Students intending to pursue the <u>Electronic Engineering stream</u> of Biomedical Engineering MUST select "EEEN20040 Electronic Circuits" as their Stage 2 Option.

Stage 3 Biomedical Engineering modules

Trimester 1	Module Code	Module Title	Credits	Level
Autumn	ACM30030	Multivariable Calculus for Engineers II	5 Credits	level: 3
Autumn	ANAT20090	Medical Sciences for Biomedical Engineers	5 Credits	level: 2
Autumn	EEEN30160	Biomedical Signal Processing	5 Credits	level: 3
Autumn		Option x2	See rules	
Autumn		Elective	5 Credits	
Trimester 2	Module Code	Module Title	Credits	Level
Spring	EEEN30150	Modelling and Simulation	5 Credits	level: 3
Spring	EEEN30180	Bioinstrumentation	5 Credits	level: 3
Spring	MEEN30160	Biofluids	5 Credits	level: 3
Spring		Option x2	See rules	
Spring		Elective	5 Credits	

Bioelectronics stream "options"

Trimester	Module Code	Module Title
Autumn	EEEN30020	Circuit Theory
Autumn	EEEN30110	Signals and Systems
Spring	EEEN30030	Electromagnetic Waves
Spring	EEEN30050	Signal Processing: Theory and Applications

Biomechanics stream "options"

Trimester	Module Code	Module Title
Autumn	MEEN20020	Manufacturing Engineering I
Autumn	MEEN30090	Materials Science and Engineering II
Spring	MEEN30010	Applied Dynamics II
Spring	MEEN30020	Mechanics of Solids II

Study Abroad (Stage 3)

Exchange & Overseas Opportunities

Sample of previous host universities for Biomedical Engineering students

University of Auckland University of Western Australia McGill University University of British Columbia Georgia Institute of Technology Purdue University University of Illinois at Urbana-Champaign University of Maryland University of Miami University of Virginia 👋 Any questions? I'm here to help!

Stage 4 Biomedical Engineering core modules

Trimester	Module Code	Module Title	Credits	Level
YEAR	EEEN30240	Professional Engineering Project	15 Credits	level: 3
Autumn	MEEN40600	Medical Device Design	5 Credits	level: 4
Autumn	MEEN40620	Biomechanics	5 Credits	level: 4
Autumn	MEEN40630	Biomaterials	5 Credits	level: 4
Autumn		Options x2	10 Credits	
Trimester	Module Code	Module Title	Credits	Level
Spring	MEEN41410	Tissue Engineering	5 Credits	level: 4
Spring	EEEN40070	Neural Engineering	5 Credits	level: 4
Spring	EEEN40350	Rehabilitation Engineering	5 Credits	level: 4
Spring		Options x1	5 Credits	

UCD Biomedical Engineering Master of Engineering Degree

ME Biomedical Engineering

Duration: 2 years

Workload: 120 credits

Entry: GPA greater than 2.8 in Biomedical/Electronic/Electrical/Mechanical Engineering

Accredited by Engineers Ireland

6-8 Month Professional Work Experience and 25 credit research project

Sample modules:

Neural Engineering Rehabilitation Engineering Machine Learning For Engineers Biosensors & Actuators Biomechanics & Mechanobiology Cell Culture & Tissue Eng Medical Sciences for Biomedical Engineers Biomechanics Biomaterials Medical Device Design Experimental design and statistics Bioinformatics Regulatory Affairs in Science

Programme Steering Committee

ANAT20090 Medical Sciences for Biomedical Engineers

https://hub.ucd.ie/usis/!W_HU_MENU.P_PUBLISH?p_tag=MODULE&MODULE=ANAT20090

Bioelectronics stream

Rehabilitation Robotics

Biosensors & Actuators

Machine Learning

Bioinstrumentation

Neuromuscular Stimulation

Neural Engineering

EEEN40350 Rehabilitation Engineering

https://hub.ucd.ie/usis/!W_HU_MENU.P_PUBLISH?p_tag =MODULE&MODULE=EEEN40350

2nd U-Net

All flipped to be

"right" hips

EEEN40720 Machine Learning for Engineers

Baseline U-Net

A basic U-Net architecture will be used as the algorithm in all four models.

Cascaded U-Net: region of interest extracted first and fed into second U-Net.

ised as

adjustment of training data

Cascaded U-Net with Augmentation: training data for second U-Net augmented.

Augment Data: rotation, flipping, contrast

Understand how to apply ML methods to engineering problems.

Deep understanding of a range of machine learning algorithms.

Best practice methods in training, testing and evaluating ML models.

Biomedical applications, e.g. Gait, ECG, Sleep

EEEN40730 Biosensors and Actuators

https://bivacor.com/

https://hub.ucd.ie/usis/!W_HU_MENU.P_PUBLISH?p_tag=MODULE&MODULE=EEEN40730

EEEN30180 Bioinstrumentation

https://hub.ucd.ie/usis/!W_HU_MENU.P_PUBLISH?p_tag=MODULE&MODULE=EEEN30180

Biomechanics stream

Medical Device Design

Biomaterials

Biofluids

Movement Biomechanics

Tissue Biomechanics

DUBLIN

MEEN40600 Medical Device Design

https://hub.ucd.ie/usis/!W HU MENU.P PUBLISH?p tag= MODULE&MODULE=MEEN40600

MEEN30160 Biofluids

https://hub.ucd.ie/usis/!W_HU_MENU.P_PUBLISH?p_tag=MODULE&MODULE=MEEN30160

MEEN40620 Biomechanics

MEEN40630 Biomaterials

Employer testimonials (work placements)

'Also, just a note that we were blown away by the quality of the applications from UCD this year - it was very tough choosing between them at both interview and offer stages. The UCD students really stand out from the other candidates (and we had applicants from all over Ireland and around Europe).'

Shimmer Technologies

'It's rarely I feel the need to go into writing on feedback directly to Universities in relation to student placements we receive here in Boston Scientific, in fact this will be the first time. However, in the case of your Masters students who have just finished placements with us here in the past few weeks..., I feel the need to specifically highlight that these students were of a stand-out nature and not only developed considerably themselves during their placements, but contributed very well to our business – in fact to the extent that they will leave a vacuum behind them now that they have returned to college...As is the case with students of the standard, they are fast learners, very intelligent, constantly ask the right questions and always bring new perspectives. In addition to this, however, what really made these students stand-out for me was their level of enthusiasm, engagement, perseverance, thoroughness, ability to integrate within the team and their strong work ethic.'

Boston Scientific

Sample ME Projects (2024/2025)

- Development and characterisation of biopolymer-doped electro-spun scaffolds.
- EEG signatures of perceptual decision making—moving from two to multiple alternatives.
- Experimental Analysis and Design of Aortic Valve Systems.
- Design of an apparatus and testing protocol for evaluating the device body interface of prostheses and orthoses.
- Design of a bespoke diffusion assay for microneedles.
- Estimating energy expenditure in elite athletes to monitor relative energy deficiency in sport (REDS).
- A computational design tool for soft orthoses and harnesses.
- Accuracy of Thin-Walled Parts Relative to Build Plate Recoater.
- Microstructure-informed mechanical behaviour of pancreatic tumours.
- Sense of agency for myoelectric control.
- Optimizing Lipid Nanoparticle Formulations for RNA Therapeutics A High-Throughput Approach.
- Development and Validation of a Perfusable Organ-on-Chip Device for Drug Testing.
- Longitudinal analysis of acoustic speech biomarkers in Huntington's disease.
- Testing of a novel robot for gait rehabilitation based on a recumbent bike design.
- Effect of fatigue on lower limb biomechanics of repeated jumping in male soccer players.
- Using Machine Learning Tools to Automate Signal Quality Control for Large Dataset Study.
- Design of a novel growth modulation device for treating knee deformities in children.
- Investigating oropharyngeal muscle activity in obstructive sleep apnea.
- Examining EEG signals of sensorimotor decision formation during learning of myoelectric control.
- Applying machine learning to automate segmentation of different tissue types.
- Optimize the development of a microfluidic device using different 3D bioprinting techniques.
- Investigating the effect of tongue position on maximum tongue force using different tongue training devices.
- The biaxial material properties of skin.
- Unravelling Meniscal Development: A MultiModal Analysis of Structural and Biomechanical Changes from Birth to Adulthood.
- Deriving individually-specific EEG indices of motor preparation for assessment of decision making.
- Estimating brain strain in extreme sports related traumatic brain injuries.
- Design of adaptive controllers for deep brain stimulation.
- Achilles tendon its age-related changes and potential clinical utility in men.
- Evaluation of STING expression in Osteosarcoma tumours.
- Predictive simulations of lower-limb cycling rehabilitation.
- A Platform for Assessing the Brain Processes behind Driver Decisions in Urban Mixed-mode Traffic.

UCD Centre for Biomedical Engineering

옥 ☆ 🚺 🔶 🥩 🚺

The UCD Centre for Biomedical

The forefront of education through

Innovation Through Collaboration

UCD Biomedical Engineering Twitter

@UCDBiomedEng

UCD Biomedical Engineering

Questions?

UCD Biomedical Engineering

The perspective of students, past and present!...

GRACE CARRAGHER GRACE.CARRAGHER@UCDCONNECT.IE

Biomedical Engineering Through Mechanical Engineering

What did I do?

MECHANICAL ENGINEERING UNDERGRADUATE DEGREE

BIOMEDICAL ENGINEERING MASTERS

Decision Time for You

- What do you enjoy about college?
 - Electrical..
 - Mechanics..
 - Energy..
 - Biomedical..
- What industry would you like to see yourself working in?
 - Medical Devices
 - Prosthetics
 - Automotive
 - Electronics

Australian National University

Medtronic – Internship

- Automation Engineering
 - Design
 - Testing
 - Documentation
 - Shipping

HOUND THE THE DI

Biomedical Engineering Masters

Biomedical Engineering Masters

Thanks for listening!

Any questions?

Ask me now or feel free to email me

grace.carragher@ucdconnect.ie

BIOMEDICAL ENGINEERING STAGE 1

Ben O'Callaghan, PhD

17 February 2025

BACHELORS & EXCHANGE

- Engineering Omnibus
 - No Biomedical undergrad
 - Chose modules from electrical/electronic/mechanical/health sciences to suit Biomedical
- 3rd Year Non-EU Exchange National University of Singapore (NUS)

MODULES STUDIED

Functional Anatomy and Kinesiology

Neural Engineering

Rehabilitation

Image Processing for Engineering

Biomaterials

Medical Device Design

Biomedical Signal Processing

Science of Human Performance

Nanomechanics

Bioinstrumentation

Tissue Engineering

Biomechanics

ME PROJECT

• A ROBOTIC KNEE BRACE FOR REHABILITATION FOLLOWING STROKE

- Manufacturing Engineer responsible for:
 - 4 Production lines
 - Ensuring high quality of product
 - Increase yield (reduce scrapped products)
 - Machinery/equipment maintenance and updates
 - Ensuring compliance with manufacturing procedures

PHD – ELECTRONIC ENGINEERING (UCD)

- Assessment of therapeutic interventions for neurological disorders
 - Wearable sensors (accelerometers)
 - Electromyography
- Development of algorithms to quantify features of:
 - Movement (kinematics)
 - Muscle activation

ELECTROMYOGRAPHY (EMG)

STROKE – EXOSKELETON STUDY

PARKINSON'S AND DEEP BRAIN STIMULATION

- Electrical stimulator implanted in Basal Ganglia
- Parameters tuned in real-time by physician

Lorce (% MVC)

45

0.2 W

0.18

DBS OFF

Dund

Reducing the physical, emotional and monetary costs of injury in sports

